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Driven, underdamped Frenkel-Kontorova model on a quasiperiodic substrate
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We consider the underdamped dynamics of a chain of atoms subject to a dc driving force and a quasiperiodic
substrate potential. The system has three inherent length scales which we take to be mutually incommensurate.
We find that when the length scales are related bysthieal mean(a cubic irrational there exists a value of
the interparticle interaction strength above which the static friction is zero. When the length scales are related
by thegolden mearta quadratic irrationalthe static friction is always nonzero. From considerations based on
the connection of this problem to standard map theory, we postulate that zero static friction is generally
possible for incommensurate ratios of the length scales involved. However, when the length scales are qua-
dratic irrationals, or have some commensurability with each other, the static friction will be nonzero for all
choices of interaction parameters. We also comment on the nature of the depinning mechanisms and the steady
states achieved by the moving chain.
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INTRODUCTION In this article we shall consider a driven, underdamped
chain ofN particles, interacting via a potentid(r), wherer
Recent advances in technology, notably the use of thés the interparticle separation, and subject to a quasiperiodic
quartz crystal microbalance, the friction force microscopegsubstrate potential. The behavior of the system will be con-
etc.[1], have provided data on the frictional process at theirolled by the relative strengths of substrate and interaction
nanoscale. This progress has stimulated attempts to undgyetential. Here we chose to fix the amplitude of the substrate
stand the fundamental processes involved via the use gfotential and vary the interparticle interaction strength. We
simple low-dimensional models, in particular those based oishall characterize this big=V"(b). In constructing the qua-
one-dimensional, driven Frenkel-Kontoro¢K) type mod-  siperiodic substrate we introduce a third length scale, so that
els[2]. In these models a certain density of interacting parthe substrate is defined byyvo mutually incommensurate
ticles is made to slide over a periodic substrate potential bjengthsa andc. (In this work we shall restrict ourselves to
the application of an external driving force. There are twothe case where is also incommensurate with)
inherent length scales: the periodicity of the substrate poten- From the following considerations, it becomes clear that
tial, a, and the natural equilibrium distance between the parthe choice of the irrational values of these three lengths may
ticles, b. If we consider the case whee#b=1, we would strongly affect the behavior of the system.
model the case of sliding between two identical, perfectly As pointed out in the pioneering work of Aubfg], the
aligned crystalline workpieces. In general one does not exproblem of the standard FK modéWith two competing
pect the two workpieces to be perfectly aligned, and so onéength scales andb) is closely connected to the theory of
would need to considea/b# 1. This would also be the case the two-dimensional Hamiltonian standard map. In particular
for workpieces with two different atomic spacings. It hasthis link is related to the problem of finding the ground state
been noted3], that unless one has very well controlled con-and possible metastable states of the FK model by recursive
ditions, one would expect that andb be mutually incom- iterations of this area-preserving map.
mensurate. In the case of incommensurate length scales, it is well-
In this paper we shall examine the case of a oneknown [6] that the FK ground state undergoes a transition
dimensional array of particles sliding overqaiasiperiodic ~ (usually referred to as TBA, i.e., transition by breaking of
substrate potential. This may be considered as a simpl@nalyticity) that can be related to the stochasticity threshold
model of friction between a quasicrystalline and crystallinewhich is observed in the standard map. For a fixed amplitude
solid, or between two quasicrystals. Recent experimghits of the substrate potential, the critical valdg of the inter-
have demonstrated that quasicrystals have a particularly lo@tomic interaction strength at which the TBA takes place,
coefficient of friction and so may be useful in technologicaldepends on the mathematical properties of the irrational
applications[5]. The case of a quasiperiodic potential canwinding numberw=Db/a, so that there is a relatioi,
also be viewed as an intermediate case between periodic orK (w). Above the transition K>K.), in the map repre-
der and a disordered substrate. The quasiperiodic potential #ntation, the FK ground state corresponds to a trajectory in
not translationally invariant: the maxima of the potential arephase space that is rotating with winding numleron a
no longer evenly spaced, nor are they of equal height. Hencgdosed, smooth curvikolmogorov-Arnold-Moser- or KAM-
we might hope to gain an insight into the more complextorus), while below the transitionK <K() it is still rotating
problem of sliding between two disordered solids from thewith the samew but on a Cantor sefcantorug. From a
study of this precisely defined problem, not complicated byphysical point of view, this means that f&>K, there ex-
randomness. ists a continuum of ground states that can be reached by the
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chain through nonrigid displacements of its atoms with no . 1( 2wy . 27y d
energy costsliding modg; on the other hand foK <K the  Uj+yu;+ 5|8 +sin +m
atoms are trapped close to the minima of the substrate po- :
tential and, because of the discontinuity of the trajectory, —fF (1)
they require a finite amount of energthe Peierls-Nabarro
barrier) to be moved.(Here we shall consider fixing the wherevy is a phenomenological viscous damping coefficient,
amplitude of the substrate potential and varying K. The lo-chosen such that we are in the underdamped regimef; @d
cation of the TBA is, in fact, controlled by theffective elas- the driving force.y can be thought of as representing degrees
tic constant g;;=Db?K/272\, where\ is the amplitude of of freedom inherent in real, physical systems which are not
the substrate potenti@f]. Hence, it is also possible to fi  included in our mode(e.g., vibrational or electronic excita-
and vary\ as is done in8]). tions in the substrajeV(r) was chosen to have a minimum
The breakup of théastandmost robustnvariant torus in gt r=b, where the system size=bN. For the simulations
KAM theory, which is one of the key mechanisms of the shown we used the Morse potentialV(r)=K/2[1
transition to chaos in Hamiltonian dynamics, takes place_ gb-r}2,

when the trajectory in phase space possesses the “most” The two lengths defining the quasiperiodic substrate po-
Diophantine irrational winding number. For the standard FKiontial area andc=alB. We used periodic boundary condi-
model this can be shown to be tigelden meanw=(\5  {ions, which means that one is forced to approximate the

—1)/2. For this specific winding numbe, takes the mini- ~ jagjred incommensurate winding numbers by ratios of inte-

mal possible value; local minima appear also CorreSpondingers. We considered the two cases discussd@]inin the
to the othemoble frequencieswhich belong to the class of case of the golden mean, the lengths are given by ratios of

quadratic irrationals with a continued fraction eXpanSionFibonacci numbers, so that, in particular, we have chasen
whose elements are all one beyond some level. ’ ’ ’ .
y =1,b=144/233, anct=a/B=144/89. For the spiral mean

In a similar way our problem can be related to Hamil- . ) .
tonian systems wittthree incommensurate frequencies or ON€ Uses the series of integers generated by the recursion

equivalently four-dimensional maps. Though KAM theory "€lationGn1=G,_1+Gp o, With G_,=Go=1, G_,=0,
guarantees stability only for systems with two degrees of0 make the approximatiom=1, b=265/351, ancc=a/p
freedom, and there has been limited success in determining265/200. We have checked that the approximations we
the existence of invariant tori for three or more frequencyhave taken are of sufficiently high order to produce behavior
dynamical systems, there is some evidence fB4tQ], for ~ characteristic of the ratios we wish to consider.
four-dimensional maps, cubic irrationals replace the quadrat-

ics. In the generalized Ostlund-Kim version of the Farey tree NUMERICAL METHOD

construction 11], the cubic irrational satisfying the equation
w®— w—1=0 (the spiral mean, has been introduced, for its
specific Diophantine properties, as a possible analog of th - S
gglden meaﬁ. Howevgr, ?here is no dirpect proof that tghis culvas used to vary the driving force: the system was initialized

bic irrational is more robugin the sense of a KAM theorem with the particles placed_at rest at a_unifo_rm separabion
than others. The dc-forceF, was then increased adiabatically from 0 to 1

A recent study of the undriven, quasiperiodic FK modelWith a stepdF=0.005. For every value df, and with a time
[8] noted distinct behaviors for particular cubic and quadraticstepdt=0.006, Eqs(1) were integrated over a time= 300,
irrational winding numbers:(i) For the case where the Which we believe is long enough to eliminate transient be-
lengthsa,b, andc were related by the spiral me&oubic a  havior and reach a steady state. The average system velocity
sliding mode was present for sufficiently strong interparticle(y)=1/NTfJ=N ;u;dt was then calculated over a tinie
interaction K>K). This case is analagous to the case of the=150. The final chain configuratiofpositions and veloci-
standard FK model wita andb incommensurate, where the tjes) obtained at one value ¢f was used as the initial con-
TBA is observed(ii) For cases where the lengths were con-gition for the integration of the dynamics for the next value
nected by the relatiom/a+n/b+p/c=0, withm,n,p inte- ¢ the driving.
ger (as, for example, for the golden mean and all other qua-

> V(lui—uj))

J#i

The equations of motion were solved numerically using a
Eourth—order Runge-Kutta algorithm. The following scheme

dratic irrational$ no sliding mode was found for any strength RESULTS
of the interparticle interaction. .
Here, we report our numerical observation of different Spiral mean

_behavi_ors for these two types _of irrational Wind_ing numbers In Fig. 1 we show the mobility of the chajn=(v)/F as
:(n_ z?.dn\?en sy;t]en‘]lcThls IS m?”';eftefj .?.yta Vant'.swngtﬁtat'c a function of the driving force for the case of the spiral mean
riction force (the force required to initiate motigrfor the winding number and two values &f. For K=1 the chain

case of lengths connected by the spiral mean and SUff'C'ent%mains pinned until the driving force exceeds the static fric-

strong interaction strength and a nonzero static friction fortion F.=0.185. From examination of the particle trajectories
smallerK and for allK for the golden mean ratio.

we see that the chain depins via the motion of a small num-
THE MODEL ber of isolated defect&inks) along the chain. At forces just
aboveF the steady states consist of mainly stationary par-
Our model consists of a one-dimensional arrayNgbar-  ticles, with a small number of kinks moving around the
ticles, with positionsy); (1<i=<N), which satisfy the follow- chain. This produces the low mobilities observed. The num-
ing equations of motion: ber of kinks present increases as one raises the driving force.
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FIG. 1. (Spiral meain Dependence of the chain mobiliy on
the driving forceF for two different values of the interaction
strength:(@) K=1<K,; (b) K=37n>K. (y=0.7).

Eventually (around F=0.35 there are enough defects that,
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FIG. 2. Static friction force= as a function of the interparticle
interaction strengtiiK. We observe the existence of a critical value
K. (above which the chain supports a sliding mpdely in the
spiral mean case. To obtain a higher precision plot, here the driving
has been increased with a step si#e=0.001.

even though they are very narrow, they begin to overlap. At

a second threshold forde=0.89, the chain motion changes
to the high driving running state wherg(v)=F. For K
=3, the chain is never pinned, and motion of the chain i
initiated by even the smallest driving force, i.Eq=0. The
chain jumps directly to the running stat@he dips in the
curve around==0.7 andF=1 are due to parametric reso-
nanceq12].)

In Fig. 2 we showF as a function of the strength of the
interparticle interactionK. We have determined the static
friction from our simulations as the driving force at which
the chain first has nonzero mobility. The static friction is
zero for interaction strengths above a critical valije=5.6.
Below this value the static friction increases with decreasin
K. NearK. we estimate the dependencefag-(K.—K)¢,
with a~2.4. For the standard FK model, from a numerical
evaluation of the Peierls-Nabarro barrigt3], one finds
a~3.

S

K, although we found~s>0 for all values ofK we consid-
ered. The bend in the curve aroukd=1.2 is due to an
abrupt restructuring of the pinned state of the chain. As we
steadily increase the driving force from zero, the pinned state
of the chain adjusts to adopt the conformation locally lowest
in energy. Usually a small change I produces a small
change in the optimal conformation of the chain. However, it
is possible for the optimal pinned state of the chain to change

discontinuously. WherK<1.2, the chain restructures dra-

matically at a force below the depinning threshold. This re-

structuring is illustrated in Fig. 4. Hence, the chain depins
from a very different state than was the case Kor 1.2,

here the chain starts to move before such a restructuring is
dvantageous.

C. Other ratios
We have also carried out simulations for other choices of

the ratios betweea, b, andc. All our simulations agree with

Golden mean

Plots of mobility against driving force are given for two
values ofK for the golden mean winding number in Fig. 3.
For K=1 the plot resembles that for the spiral mean case
The chain is pinned until a forcEs=0.19 and then depins
via motion of a few isolated defects. Again the chain jumps
to the running state for higher driving. At larg€r however,
we always observed a nonzero static friction. The ddse
=3 is shown in Fig. 3.

The static friction is smaller than d&=1, but clearly

nonzero. The first steady states above the depinning thresh-

old are again spatially inhomogeneous. However, nowkhat

is large, defects are more extended and tend to overlap. One
no longer observes isolated defects; there is instead an ap-

preciable background drift velocity on top of which the in-
homogeneities occur. Hence, even just ab&e we ob-
serve a relatively large mobility.
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FIG. 3. (Golden meanDependence of the chain mobilify on

The static friction for the golden mean case is shown, as ge driving force F for two different values of the interaction
function of K, in Fig. 2. AgainF decreases as one increasesstrength:(a) K=1; (b) K=3# (y=0.7).
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approximation to incommensurate winding numbers not sat-
isfying m/a+n/b+p/c=0, for any nonzero integers,n,p,
F<=0 is possible for strong enougK. Only for special
choices satisfying the above condition will one obt&g

#0 for all K. Whether the spiral mean plays the role for the
quasiperiodic substrate that the golden mean does for the
periodic substrate, i.e., gives the smallgstfor zero static
friction, is an open question.

Hence, using these systems as models of sliding quasic-
rystals, one would expect that, for sufficiently strongly
coupled systems, zero static friction could be attained. Only
with certain specially selected atomic spacings and orienta-
tions would this not be possible. Even though a zero static
friction may be obtained, this does not mean that nonzero
dynamicfriction (a superlubric stajeis possible. For our
model F=yv. Even wheny=0, it has recently been dem-
onstrated, for the standard, incommensurate FK mpgb4|

FIG. 4. (Golden meapPinned state configurations observed just {5t g superlubric state is only possible for very small sys-
below the depinning transition fofa) K=1.1; (b) K=1.3. Only a

limited portion of the chain is displayed for clarity.

the

following postulatg8]: Choosinga, b, and ¢ so that

m/a+n/b+p/c#0, for any set of integerm,n,p, one ob-
tains behavior in the class of the spiral mean. For partiallynodel in the undamped limit, even though our substrate is
commensurate choices, e.gs=b=1, a/c incommensurate,
or even irrational choices such thata+n/b+p/c=0 (e.g.,

all systematic approximations to quadratic irrationalshav-

ior in the golden mean class is observed.

We have studied the underdamped dynamics of an inte

CONCLUSIONS

tems. As soon as the phonon spectrum of the chain becomes
quasicontinuous, energy will always be transfered from the
center of mass motion of the chain to excite phonon modes
via high-order resonances with the washboard driving fre-
quency. The same kind of process should also hold for our

defined by two length scales.

It would probably be necessary to generalize this model to
at least two dimensions to obtain a more realistic model
which one could relate to experiment. In two dimensions it
would be possible for the sliding particles to avoid passing
over the highest barriers in the substrate potential, which
they have to negotiate in one dimension. The present experi-

'mental data on quasicrystal tribology does not clearly link

acting chain of particles subject to a quasiperiodic substratg, - gesirable frictional properties with their unique atomic

potential and dc driving force for particular values of the

arrangements. We hope that sufficiently well-controlled ex-

ratios of the length scales involved. We observed zero staliferiments can be carried out in the future to determine if the

friction for the case of the spiral mean at sufficiently Strongp iy lar quasicrystalline arrangement of atoms has any spe-
interparticle interactions, whereas for the golden mé&an

was always found to be nonzero. This is consistent with the
recent observations made for the undriven quasiperiodic FK Work at Los Alamos National Laboratory was supported
model [8]. As in Ref.[8] we have postulated that for any by the U.S. D.O.E. under Contract No. W-7405-ENG-36.
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