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Driven, underdamped Frenkel-Kontorova model on a quasiperiodic substrate
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We consider the underdamped dynamics of a chain of atoms subject to a dc driving force and a quasiperiodic
substrate potential. The system has three inherent length scales which we take to be mutually incommensurate.
We find that when the length scales are related by thespiral mean~a cubic irrational! there exists a value of
the interparticle interaction strength above which the static friction is zero. When the length scales are related
by thegolden mean~a quadratic irrational! the static friction is always nonzero. From considerations based on
the connection of this problem to standard map theory, we postulate that zero static friction is generally
possible for incommensurate ratios of the length scales involved. However, when the length scales are qua-
dratic irrationals, or have some commensurability with each other, the static friction will be nonzero for all
choices of interaction parameters. We also comment on the nature of the depinning mechanisms and the steady
states achieved by the moving chain.
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INTRODUCTION

Recent advances in technology, notably the use of
quartz crystal microbalance, the friction force microsco
etc. @1#, have provided data on the frictional process at
nanoscale. This progress has stimulated attempts to un
stand the fundamental processes involved via the use
simple low-dimensional models, in particular those based
one-dimensional, driven Frenkel-Kontorova~FK! type mod-
els @2#. In these models a certain density of interacting p
ticles is made to slide over a periodic substrate potentia
the application of an external driving force. There are t
inherent length scales: the periodicity of the substrate po
tial, a, and the natural equilibrium distance between the p
ticles, b. If we consider the case wherea/b51, we would
model the case of sliding between two identical, perfec
aligned crystalline workpieces. In general one does not
pect the two workpieces to be perfectly aligned, and so
would need to considera/bÞ1. This would also be the cas
for workpieces with two different atomic spacings. It h
been noted@3#, that unless one has very well controlled co
ditions, one would expect thata and b be mutually incom-
mensurate.

In this paper we shall examine the case of a o
dimensional array of particles sliding over aquasiperiodic
substrate potential. This may be considered as a sim
model of friction between a quasicrystalline and crystall
solid, or between two quasicrystals. Recent experiments@4#
have demonstrated that quasicrystals have a particularly
coefficient of friction and so may be useful in technologic
applications@5#. The case of a quasiperiodic potential c
also be viewed as an intermediate case between periodi
der and a disordered substrate. The quasiperiodic potent
not translationally invariant: the maxima of the potential a
no longer evenly spaced, nor are they of equal height. He
we might hope to gain an insight into the more comp
problem of sliding between two disordered solids from t
study of this precisely defined problem, not complicated
randomness.
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In this article we shall consider a driven, underdamp
chain ofN particles, interacting via a potentialV(r ), wherer
is the interparticle separation, and subject to a quasiperio
substrate potential. The behavior of the system will be c
trolled by the relative strengths of substrate and interac
potential. Here we chose to fix the amplitude of the substr
potential and vary the interparticle interaction strength. W
shall characterize this byK5V9(b). In constructing the qua-
siperiodic substrate we introduce a third length scale, so
the substrate is defined bytwo mutually incommensurate
lengthsa and c. ~In this work we shall restrict ourselves t
the case wherec is also incommensurate withb.!

From the following considerations, it becomes clear th
the choice of the irrational values of these three lengths m
strongly affect the behavior of the system.

As pointed out in the pioneering work of Aubry@6#, the
problem of the standard FK model~with two competing
length scalesa andb) is closely connected to the theory o
the two-dimensional Hamiltonian standard map. In particu
this link is related to the problem of finding the ground sta
and possible metastable states of the FK model by recur
iterations of this area-preserving map.

In the case of incommensurate length scales, it is w
known @6# that the FK ground state undergoes a transit
~usually referred to as TBA, i.e., transition by breaking
analyticity! that can be related to the stochasticity thresh
which is observed in the standard map. For a fixed amplit
of the substrate potential, the critical valueKc of the inter-
atomic interaction strength at which the TBA takes pla
depends on the mathematical properties of the irratio
winding numberv5b/a, so that there is a relationKc
5Kc(v). Above the transition (K.Kc), in the map repre-
sentation, the FK ground state corresponds to a trajector
phase space that is rotating with winding numberv on a
closed, smooth curve~Kolmogorov-Arnold-Moser- or KAM-
torus!, while below the transition (K,Kc) it is still rotating
with the samev but on a Cantor set~cantorus!. From a
physical point of view, this means that forK.Kc there ex-
ists a continuum of ground states that can be reached by
©2000 The American Physical Society03-1
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chain through nonrigid displacements of its atoms with
energy cost~sliding mode!; on the other hand forK,Kc the
atoms are trapped close to the minima of the substrate
tential and, because of the discontinuity of the trajecto
they require a finite amount of energy~the Peierls-Nabarro
barrier! to be moved.~Here we shall consider fixing th
amplitude of the substrate potential and varying K. The
cation of the TBA is, in fact, controlled by theeffective elas-
tic constant ge f f5b2K/2p2l, wherel is the amplitude of
the substrate potential@7#. Hence, it is also possible to fixK
and varyl as is done in@8#!.

The breakup of thelast andmost robustinvariant torus in
KAM theory, which is one of the key mechanisms of th
transition to chaos in Hamiltonian dynamics, takes pla
when the trajectory in phase space possesses the ‘‘m
Diophantine irrational winding number. For the standard
model this can be shown to be thegolden meanv5(A5
21)/2. For this specific winding number,Kc takes the mini-
mal possible value; local minima appear also correspond
to the othernoble frequencies, which belong to the class o
quadratic irrationals with a continued fraction expans
whose elements are all one beyond some level.

In a similar way our problem can be related to Ham
tonian systems withthree incommensurate frequencies
equivalently four-dimensional maps. Though KAM theo
guarantees stability only for systems with two degrees
freedom, and there has been limited success in determi
the existence of invariant tori for three or more frequen
dynamical systems, there is some evidence that@9,10#, for
four-dimensional maps, cubic irrationals replace the quad
ics. In the generalized Ostlund-Kim version of the Farey t
construction@11#, the cubic irrational satisfying the equatio
v32v2150 ~thespiral mean!, has been introduced, for it
specific Diophantine properties, as a possible analog of
golden mean. However, there is no direct proof that this
bic irrational is more robust~in the sense of a KAM theorem!
than others.

A recent study of the undriven, quasiperiodic FK mod
@8# noted distinct behaviors for particular cubic and quadra
irrational winding numbers:~i! For the case where th
lengthsa,b, andc were related by the spiral mean~cubic! a
sliding mode was present for sufficiently strong interparti
interaction (K.Kc). This case is analagous to the case of
standard FK model witha andb incommensurate, where th
TBA is observed.~ii ! For cases where the lengths were co
nected by the relationm/a1n/b1p/c50, with m,n,p inte-
ger ~as, for example, for the golden mean and all other q
dratic irrationals! no sliding mode was found for any streng
of the interparticle interaction.

Here, we report our numerical observation of differe
behaviors for these two types of irrational winding numb
in a driven system. This is manifested by a vanishing stat
friction force ~the force required to initiate motion! for the
case of lengths connected by the spiral mean and sufficie
strong interaction strength and a nonzero static friction
smallerK and for allK for the golden mean ratio.

THE MODEL

Our model consists of a one-dimensional array ofN par-
ticles, with positionsui (1< i<N), which satisfy the follow-
ing equations of motion:
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5F, ~1!

whereg is a phenomenological viscous damping coefficie
chosen such that we are in the underdamped regime, andF is
the driving force.g can be thought of as representing degre
of freedom inherent in real, physical systems which are
included in our model~e.g., vibrational or electronic excita
tions in the substrate!. V(r ) was chosen to have a minimum
at r 5b, where the system sizeL5bN. For the simulations
shown we used the Morse potential,V(r )5K/2@1
2e(b2r )#2.

The two lengths defining the quasiperiodic substrate
tential area andc5a/b. We used periodic boundary cond
tions, which means that one is forced to approximate
desired incommensurate winding numbers by ratios of in
gers. We considered the two cases discussed in@8#. In the
case of the golden mean, the lengths are given by ratio
Fibonacci numbers, so that, in particular, we have chosea
51, b5144/233, andc5a/b5144/89. For the spiral mean
one uses the series of integers generated by the recu
relation Gn115Gn211Gn22, with G225G051, G2150,
to make the approximation,a51, b5265/351, andc5a/b
5265/200. We have checked that the approximations
have taken are of sufficiently high order to produce behav
characteristic of the ratios we wish to consider.

NUMERICAL METHOD

The equations of motion were solved numerically using
fourth-order Runge-Kutta algorithm. The following schem
was used to vary the driving force: the system was initializ
with the particles placed at rest at a uniform separationb.
The dc-force,F, was then increased adiabatically from 0 to
with a stepdF50.005. For every value ofF, and with a time
stepdt50.006, Eqs.~1! were integrated over a timet5300,
which we believe is long enough to eliminate transient b
havior and reach a steady state. The average system vel

^v&51/NT*0
T( i 51

N u̇idt was then calculated over a timeT
5150. The final chain configuration~positions and veloci-
ties! obtained at one value ofF was used as the initial con
dition for the integration of the dynamics for the next val
of the driving.

RESULTS

Spiral mean

In Fig. 1 we show the mobility of the chainm[^v&/F as
a function of the driving force for the case of the spiral me
winding number and two values ofK. For K51 the chain
remains pinned until the driving force exceeds the static f
tion Fs50.185. From examination of the particle trajectori
we see that the chain depins via the motion of a small nu
ber of isolated defects~kinks! along the chain. At forces jus
aboveFs the steady states consist of mainly stationary p
ticles, with a small number of kinks moving around th
chain. This produces the low mobilities observed. The nu
ber of kinks present increases as one raises the driving fo
3-2
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BRIEF REPORTS PHYSICAL REVIEW E 63 017203
Eventually ~around F50.35! there are enough defects tha
even though they are very narrow, they begin to overlap.
a second threshold forceF50.89, the chain motion change
to the high driving running state whereg^v&5F. For K
53p, the chain is never pinned, and motion of the chain
initiated by even the smallest driving force, i.e.,Fs50. The
chain jumps directly to the running state.~The dips in the
curve aroundF50.7 andF51 are due to parametric reso
nances@12#.!

In Fig. 2 we showFs as a function of the strength of th
interparticle interaction,K. We have determined the stat
friction from our simulations as the driving force at whic
the chain first has nonzero mobility. The static friction
zero for interaction strengths above a critical valueKc55.6.
Below this value the static friction increases with decreas
K. NearKc we estimate the dependence asFs;(Kc2K)a,
with a;2.4. For the standard FK model, from a numeric
evaluation of the Peierls-Nabarro barrier@13#, one finds
a'3.

Golden mean

Plots of mobility against driving force are given for tw
values ofK for the golden mean winding number in Fig.
For K51 the plot resembles that for the spiral mean ca
The chain is pinned until a forceFs50.19 and then depins
via motion of a few isolated defects. Again the chain jum
to the running state for higher driving. At largerK, however,
we always observed a nonzero static friction. The caseK
53p is shown in Fig. 3.

The static friction is smaller than atK51, but clearly
nonzero. The first steady states above the depinning thr
old are again spatially inhomogeneous. However, now thaK
is large, defects are more extended and tend to overlap.
no longer observes isolated defects; there is instead an
preciable background drift velocity on top of which the i
homogeneities occur. Hence, even just aboveFs , we ob-
serve a relatively large mobility.

The static friction for the golden mean case is shown, a
function ofK, in Fig. 2. AgainFs decreases as one increas

FIG. 1. ~Spiral mean! Dependence of the chain mobilitym on
the driving force F for two different values of the interaction
strength:~a! K51,Kc ; ~b! K53p.Kc (g50.7).
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K, although we foundFs.0 for all values ofK we consid-
ered. The bend in the curve aroundK51.2 is due to an
abrupt restructuring of the pinned state of the chain. As
steadily increase the driving force from zero, the pinned s
of the chain adjusts to adopt the conformation locally low
in energy. Usually a small change inF produces a smal
change in the optimal conformation of the chain. However
is possible for the optimal pinned state of the chain to cha
discontinuously. WhenK,1.2, the chain restructures dra
matically at a force below the depinning threshold. This
structuring is illustrated in Fig. 4. Hence, the chain dep
from a very different state than was the case forK.1.2,
where the chain starts to move before such a restructurin
advantageous.

C. Other ratios

We have also carried out simulations for other choices
the ratios betweena, b, andc. All our simulations agree with

FIG. 2. Static friction forceFs as a function of the interparticle
interaction strengthK. We observe the existence of a critical valu
Kc ~above which the chain supports a sliding mode! only in the
spiral mean case. To obtain a higher precision plot, here the dri
has been increased with a step sizedF50.001.

FIG. 3. ~Golden mean! Dependence of the chain mobilitym on
the driving force F for two different values of the interaction
strength:~a! K51; ~b! K53p (g50.7).
3-3
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BRIEF REPORTS PHYSICAL REVIEW E 63 017203
the following postulate@8#: Choosinga, b, and c so that
m/a1n/b1p/cÞ0, for any set of integersm,n,p, one ob-
tains behavior in the class of the spiral mean. For partia
commensurate choices, e.g.,a5b51, a/c incommensurate
or even irrational choices such thatm/a1n/b1p/c50 ~e.g.,
all systematic approximations to quadratic irrationals! behav-
ior in the golden mean class is observed.

CONCLUSIONS

We have studied the underdamped dynamics of an in
acting chain of particles subject to a quasiperiodic subst
potential and dc driving force for particular values of t
ratios of the length scales involved. We observed zero st
friction for the case of the spiral mean at sufficiently stro
interparticle interactions, whereas for the golden meanFs
was always found to be nonzero. This is consistent with
recent observations made for the undriven quasiperiodic
model @8#. As in Ref. @8# we have postulated that for an

FIG. 4. ~Golden mean! Pinned state configurations observed ju
below the depinning transition for:~a! K51.1; ~b! K51.3. Only a
limited portion of the chain is displayed for clarity.
-
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approximation to incommensurate winding numbers not s
isfying m/a1n/b1p/c50, for any nonzero integersm,n,p,
Fs50 is possible for strong enoughK. Only for special
choices satisfying the above condition will one obtainFs
Þ0 for all K. Whether the spiral mean plays the role for t
quasiperiodic substrate that the golden mean does for
periodic substrate, i.e., gives the smallestKc for zero static
friction, is an open question.

Hence, using these systems as models of sliding qua
rystals, one would expect that, for sufficiently strong
coupled systems, zero static friction could be attained. O
with certain specially selected atomic spacings and orie
tions would this not be possible. Even though a zero st
friction may be obtained, this does not mean that nonz
dynamic friction ~a superlubric state! is possible. For our
model F>gv. Even wheng50, it has recently been dem
onstrated, for the standard, incommensurate FK model@14#,
that a superlubric state is only possible for very small s
tems. As soon as the phonon spectrum of the chain beco
quasicontinuous, energy will always be transfered from
center of mass motion of the chain to excite phonon mo
via high-order resonances with the washboard driving f
quency. The same kind of process should also hold for
model in the undamped limit, even though our substrate
defined by two length scales.

It would probably be necessary to generalize this mode
at least two dimensions to obtain a more realistic mo
which one could relate to experiment. In two dimensions
would be possible for the sliding particles to avoid pass
over the highest barriers in the substrate potential, wh
they have to negotiate in one dimension. The present exp
mental data on quasicrystal tribology does not clearly l
their desirable frictional properties with their unique atom
arrangements. We hope that sufficiently well-controlled e
periments can be carried out in the future to determine if
particular quasicrystalline arrangement of atoms has any
cial signature in their frictional properties.

Work at Los Alamos National Laboratory was support
by the U.S. D.O.E. under Contract No. W-7405-ENG-36.
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